Researchers at Peking University, the Chinese Academy of Sciences and Shanghai Tech University have recently fabricated a radiation-hardened and repairable integrated circuit (IC) based on carbon nanotube transistors with ion gel gates. This IC, first presented in a paper pre-published in Nature Electronics, could be used to build new electronic devices that are more resistant to high-energy radiation.
They introduced a new strategy that enables the realization of transistors and ICs that are wholly immune to radiation-related damage. The approach they devised essentially entails the redesign of all the vulnerable parts of FETs and the use of new materials that are more resistant to radiation. In addition, the researchers introduced a method to recover FETs via a heat treatment process known as annealing, which they carried out at moderate temperatures.
The radiation-hardened IC has a semiconducting carbon nanotube transistor (CNT) as a channel, an ion gel as its gate and a substrate made of polyimide. CNTs are intrinsically radiation-resistant semiconductors due to their strong C-C bonds, nanoscale cross sections and their low atomic number. Therefore, in their study, the researchers primarily focused on trying to make their IC's gate insulator and substrate more resistant to radiation.
In addition to developing an IC with a high tolerance to radiation, significantly higher than that of traditional silicon-based transistors, Zhang and his colleagues introduced a method that could be used to recover FETs damaged by radiation. More specifically, they found that radiation-damaged FETs could be repaired by annealing them at a moderate temperature of 100 °C for 10 min.
In the future, the method for fabricating high energy radiation-resistant transistors and ICs devised by this team of researchers could enable the development of durable and more robust electronics that can operate in unusual and potentially problematic environments. For instance, the IC they developed could be used to create electronics that can be sent into space or devices for the nuclear energy industry.
https://techxplore.com/news/2020-10-radiation-immune-chips-fabricate-durable-electronics.html
They introduced a new strategy that enables the realization of transistors and ICs that are wholly immune to radiation-related damage. The approach they devised essentially entails the redesign of all the vulnerable parts of FETs and the use of new materials that are more resistant to radiation. In addition, the researchers introduced a method to recover FETs via a heat treatment process known as annealing, which they carried out at moderate temperatures.
The radiation-hardened IC has a semiconducting carbon nanotube transistor (CNT) as a channel, an ion gel as its gate and a substrate made of polyimide. CNTs are intrinsically radiation-resistant semiconductors due to their strong C-C bonds, nanoscale cross sections and their low atomic number. Therefore, in their study, the researchers primarily focused on trying to make their IC's gate insulator and substrate more resistant to radiation.
In addition to developing an IC with a high tolerance to radiation, significantly higher than that of traditional silicon-based transistors, Zhang and his colleagues introduced a method that could be used to recover FETs damaged by radiation. More specifically, they found that radiation-damaged FETs could be repaired by annealing them at a moderate temperature of 100 °C for 10 min.
In the future, the method for fabricating high energy radiation-resistant transistors and ICs devised by this team of researchers could enable the development of durable and more robust electronics that can operate in unusual and potentially problematic environments. For instance, the IC they developed could be used to create electronics that can be sent into space or devices for the nuclear energy industry.
https://techxplore.com/news/2020-10-radiation-immune-chips-fabricate-durable-electronics.html
No comments :
Post a Comment