26/04/2022

Study quantifies metal supplies needed to reach EU's climate neutrality goal

On March 8, European Commission President Ursula von der Leyen called for European independence from Russian oil, coal and gas, saying "we simply cannot rely on a supplier who explicitly threatens us. We need to act now to… accelerate the clean energy transition. The quicker we switch to renewables and hydrogen, combined with more energy efficiency, the quicker we will be truly independent and master our energy system."

The independent KU Leuven study is the first to offer EU-specific numbers related to the International Energy Agency's warning in 2021 of looming supply challenges for the enabling metals needed to help end fossil fuels. Meeting the European Union's Green Deal goal of climate neutrality by 2050 will require 35 times more lithium and 7 to 26 times the amount of increasingly scarce rare earth metals compared to Europe's limited use today, according to a study from Belgian university KU Leuven. The energy transition will also require far greater annual supplies of aluminum (equivalent to 30% of what Europe already uses today), copper (35%), silicon (45%), nickel (100%), and cobalt (330%), all essential to Europe's plans for producing the electric vehicles and batteries, renewable wind, solar and hydrogen energy technologies, and the grid infrastructure needed to achieve climate neutrality.

The study says that by 2050, Europe's plans for producing clean energy technologies will require annually:
  • 4.5 million tons of aluminum (an increase of 33% compared to today's use)
  • 1.5 million tons of copper (35%)
  • 800,000 tons of lithium (3,500%)
  • 400,000 tons of nickel (100%)
  • 300,000 tons of zinc (10 to 15%)
  • 200,000 tons of silicon (45%)
  • 60,000 tons of cobalt (330%)
  • and 3,000 tons of the rare earth metals neodymium, dysprosium and praseodymium (700-2,600%)

"Although the EU has committed to accelerate its energy transition and produce a great deal of its clean energy technologies domestically, it remains import dependent for much of the metal needed, and there is growing concern about the security of supply. Europe needs to decide urgently how it will bridge its looming supply gap for primary metals. Without a decisive strategy, it risks new dependencies on unsustainable suppliers. Coal-powered Chinese and Indonesian metal production will dominate global refining capacity growth for battery metals and rare earths. Europe also relies on Russia for its current supply of aluminum, nickel and copper. A paradigm shift is needed if Europe wants to develop new local supply sources with high environmental and social protections. Today we don't see the community buy-in or the business conditions for the continent to build its own strong supply chains. The window is narrowing; projects really need to be taken forward in the next two years to be ready by 2030." the study says.

The study says there is theoretical potential for new domestic mines to cover between 5% and 55% of Europe's 2030 needs, with largest project pipelines for lithium and rare earths. But most announced projects have an uncertain future despite Europe's comparatively high environmental standards, struggling with local community opposition and permit challenges, or relying on untested processes. Europe would also need to open new refineries to transform mined ores and secondary raw materials into metals or chemicals. Europe's energy crisis makes new refining investment challenging and skyrocketing power prices have already caused the temporary closure of nearly half the continent's existing refining capacity for aluminum and zinc, while production has increased in other parts of the world. Coal-powered Chinese and Indonesian metal production is projected to dominate global refining capacity growth for battery metals and rare earths in the next decade. In the spotlight after the Ukraine invasion, Europe also relies on Russia for much of its imported supply of aluminum, nickel and copper.

"Recycling is Europe's best chance to improve its long-term self-sufficiency. It's a step-up that our clean energy system will be based on permanent metals which can be recycled indefinitely, compared with today's constant burning of fossil fuels. The bloc, however, "must act strongly now to raise recycling rates, invest in the necessary infrastructure, and overcome key economic bottlenecks. Metals recycling, on average, saves between 35% and 95% of the CO2 compared with primary metals production. But recycling will not provide a viable EU supply source to Europe's electric vehicle batteries and renewable energy technologies until after 2040, however, these applications and their metals are only just being put on the market and will not be available for recycling for the next 10 to 15 years. Technology developments and behavioral changes will also have an important influence on metals demand after 2030, but could not be assessed in the study due to a lack of scenarios" the study clarifies.

https://techxplore.com/news/2022-04-quantifies-metal-eu-climate-neutrality.html

New research shows if the world's energy consumption grows at the pre-COVID rate, technological change alone will not be enough to halve global CO₂ emissions by 2030. We will have to cut energy consumption 50–75% by 2050 while accelerating the renewable build.
And that means lifestyle change driven by social policies: https://www.tandfonline.com/doi/abs/10.1080/14693062.2022.2061407

No comments :

Post a Comment